

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

Content

ABRAMIUC ALEXANDRU, TEODORESCU SILVIA, ENE-VOICULESCU CARMEN, ENE-VOICULESCU VIRGIL

SPORTS TRAINING COMPONENTS IN THE INTERNATIONAL NAUTICAL REPRESENTATIVE TEAMS CHAMPIONSHIP, TUZLA, TURKEY / p. 235

AHMET SANİOĞLU, ZEHRANUR SANİOĞLU TANIŞ, MEHİBE AKANDERE, MİHRİBAN ÜLKER, YAĞMUR KOCAOĞLU, NADİDE ASLIHAN PEKTAŞ

THE RELATIONSHIP BETWEEN ANXIETY AND LIFE SATISFACTION IN THE U23 CATEGORY WRESTLERS / p. 240

CARACALEANU SORIN GABRIEL, CARACALEANU CRISTIAN MIHAI, POTOP VLADIMIR STUDY ON THE IMPROVEMENT OF THE INITIAL TRAINING IN MARTIAL ARTS FOR CHILDREN AGED 7-12 YEARS / p. 246

CAZAN FLORIN, GEORGESCU ADRIAN

BI-UNIVOCAL RELATIONSHIP BETWEEN THE GAME MODEL AND TRAINING MODEL IN HANDBALL $/\,p.\,253$

CAZAN FLORIN, RIZESCU CONSTANTIN, VĂRZARU CRISTINA, GEORGESCU ADRIAN IMPROVING MOTOR SKILLS THROUGH HANDBALL ELEMENTS FOR THE PRIMARY CLASS/p. 259

CĂLIN MARIANA FLORICICA, MIHAI RADU ANDREI

THE INFLUENCE OF INTERPERSONAL SKILLS ON PROFESSIONAL SUCCESS IN PERFORMANCE ATHLETES / p. 264

CEMALETTIN BUDAK, AHMET SANİOĞLU, MINE TAŞKIN, NADIDE ASLIHAN PEKTAŞ, MAYA BUDAK

RELATIONSHIP BETWEEN MAXVO₂AND ANAEROBIC ENDURANCE / p. 270

CHERA-FERRARIO BIANCA, IANCU AUREL

CONTRIBUTIONS TO THE DEVELOPMENT OF RECREATIONAL GYMNASTICS IN ROMANIA/p. 277

COJOCARU ADIN-MARIAN, COJOCARU MARILENA

MODELING THE TRAINING IN THE VOLLEY GAME, BY SOFTWEAR PROGRAMS / p. 284

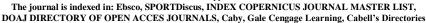
DEMİRHAN BILAL, CANUZAKOV KANAT, ABDURRAHMANOVA CIPARE, GUNAY MEHMET, BOLZHIROVA EMILLIA

SEASONAL EVALUATION OF REGIONAL STRENGTH OF ATHLETES OF NATIONAL TEAM OF KYRGYZSTAN FROM DIFFERENT BRANCHES OF SPORT BEFORE 2016 SUMMER OLYMPIC GAMES / p. 290

DUTĂ DANIEL, POPA CRISTIAN

IDENTIFICATION OF DIMENSIONS OF THE PROFESSIONAL PROFILES OF THE ABSOLVENTS OF THE MECHANICAL AND MARITIME FACULTY OF THE OVIDIUS UNIVERSITY OF CONSTANȚA / p. 295

IZZO RICCARDO, CORRADINI PAOLO, HOSSEINI VARDE'Ì CIRO


THE ROLE OF ONE ASPECIFIC TRAINING PROTOCOL IN A SPECIFIC TECHNICAL AND COORDINATIVE TEST FOR SOCCER IN YOUTH MALE FOOTBALLERS / p. 303

KAUKAB AZEEM, VARGHESE C ANTONY

COMPARATIVE ANALYSIS OF EXERCISE MOTIVATION OF UNIVERSITY STUDENTS AT DIFFERENT LEVELS OF BODY MASS INDEX (BMI) / p. 308

LUPU GABRIEL STĂNICĂ, POPA CRISTINA-ELENA THE IMPORTANCE OF MUSCLE STRENGTHENING IN TREATING DISC-CAUSED LUMBALGIAS / p. 313

MACOVEI SABINA, MARCU DANIELA, DINȚICĂ GABRIELA MARATHON, BETWEEN HISTORY AND TRADITION / p. 319

MAN MARIA CRISTINA, GANERA CĂTĂLIN

STUDY ON CHANGING HEMATOCRIT VALUES AFTER A21 DAY STAGE OF TRAINING (ATHLETICS) ON SAND OF BLACK SEA SEASIDE (CONSTANȚA, ROMANIA) / p. 325

MANOS MIHAELA, POPESCU LAVINIA

INFORMATION TECHNOLOGY IN THE EVALUATION OF TECHNICAL EFFICIENCY IN RHYTHMIC GYMNASTICS GROUP EVENT / p. 330

METIN SAHIN, KERIME BADEMLİ, NESLIHAN LOK, GÜLTEN UZUN, ALI SARI, SEFA LOK RELATIONSHIP BETWEEN PHYSICAL ACTIVITY LEVELS AND WELL-BEING OF INDIVIDUALS / p. 337

METIN SAHIN, NESLIHAN LOK, ALI SARI, SEFA LOK

INVESTIGATION OF THE RELATIONSHIP BETWEEN PHYSICAL ACTIVITY AND SLEEP QUALITY IN ADULTS / p. 343

MUSTAFA KAYA, NAZMI SARITAŞ, YAŞAR KÖROĞLU

A COMPARISON OF MALE AND FEMALE ADOLESCENT TENNIS PLAYERS THROUGH SELECTED **EUROFIT TEST BATTERY / p. 348**

OLTEAN ANTOANELA, DOBRESCU TATIANA, POPESCU RĂDUCU IMPROVING ARTISTIC JUMP AT BEAM / p. 354

OLTEANU NELU

KEY POYNTS IN KNEE REHABILITATION / p. 362

PAVEL SILVIU-IOAN, BOTEZATU CRISTINA, CIUREA CRISTINA

COMPARATIVE ANALYSIS OF SOME MOTOR SKILLS OF THE STUDENTS FROM PHYSICAL EDUCATION AND SPORT / p. 368

POPA CRISTIAN, POPA CORINA

CONTRIBUTION OF CHALLENGES TO CHILDREN FROM CHURCH EDUCATION IN THE PHYSIC EDUCATION AND SPORTS LESSONS / p. 375

RANCEA ADY CONSTANTIN

"PSYCHOLOGICAL" ORDINARY CRITICS TO SPORTS / p. 383

SAVU CRISTIAN FLORIAN, PEHOIU CONSTANTIN

DEVELOPMENT OF PHYSICAL AND MOTRICAL CAPACITIES OF GYMNASIUM CLASSES STUDENTS BY BASKETBALL SPECIFIC MEANS / p. 388

SAVU CRISTIAN FLORIAN, PEHOIU CONSTANTIN

ANALYSIS OF THE SOMATIC DEVELOPMENT LEVEL OF JUNIOR BASKETBALL PLAYERS U18 -NOTE I / p. 396

SIMA ELENA-DIANA, POTOP VLADIMIR

METHODOLOGICAL ASPECTS OF LEARNING THE FREESTYLE SWIMMING AT PHYSICAL EDUCATION AND SPORT SUBJECT IN THE HIGHER EDUCATION OF OTHER PROFILES / p. 403

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

TEUSDEA CLAUDIU

TECHNICAL AND TACTICAL ASPECTS OF TWO- HANDED BACKHAND BLOCKED RETURN IN THE SINGLES MEN / p. 408

TIMNEA OLIVIA CARMEN, POTOP LARISA, TIMNEA ANDREEA CONSUELA USING KINESIOTHERAPY PROGRAMS IN CHILDREN WITH DOWN SYNDROME / p. 414

TIMNEA OLIVIA CARMEN, STĂNESCU MARIUS, POTOP VLADIMIR HEMIPARESIS AFTER ISCHEMIC STROKE / p. 422

ȚIFREA CORINA, CRISTIAN VALENTIN, COSTACHE RALUCA LIFE QUALITY OF AMATEUR BODYBUILDERS / p. 427

VLĂDUȚU GEORGETA (NICOLA), MACOVEI SABINA, ZAHIU MIHAELA PERCEPTION OF PEOPLE WORKING IN THE CULTURAL AND ARTISTIC FIELD OF THE NEED TO PRACTICE MOTOR ACTIVITIES /p. 432

ZĂVĂLEANU MIHAELA, COSMA GERMINA ALINA, BRĂBIESCU-CĂLINESCU LUMINIȚA, COSMA ALEXANDRU, LICĂ ELIANA

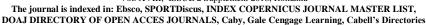
LEISURE TIME ACTIVITIES PARTICIPATION FOR SCHOOL-AGED CHILDREN AND YOUNG ADULTS WITHDOWN SYNDROME / p.442

CAMILLINI A., D'AMEN G., IZZO RICARDO CONCURRENT TRAINING IN THE CONDITIONAL PLANNING OF ELITE RUGBY PLAYER / p. 447

TEKKURŞUN DEMİR GÖNÜL, CİCİOĞLU HALIL İBRAHIM, İLHAN EKREM LEVENT, HAZAR ZEKIHAN

EXAMINATION OF FRIEND RELATED AUTONOMY IN THE PARTICIPATION OF PHYSICAL EDUCATION TEACHER CANDIDATES IN THE EXERCISE / p. 452

TEKKURŞUN DEMİR GÖNÜL, İLHAN EKREM LEVENT, CİCİOĞLU HALIL İBRAHIM, NAMLI SEVINÇ


EXAMINATION OF THE VALUES GAINED BY HIGH SCHOOL STUDENTS THROUGH PHYSICAL EDUCATION AND SPORT LESSON $/\,p.$ 458

SABĂU ANCA MARIA, IANO PAULA GEORGIANA, OROS SIMONA, BULZ ANDRADA MARIA, CRISTEA DANA IOANA, ROTAR MONICA

THE INFLUENCE OF EXTRA-SCHOOL ACTIVITIES ON THE CHILD'S EMOTIONAL BEHAVIOUR / p. 464

ALPHABETICAL AUTHOR INDEX / p. 473

TECHNICAL REQUIREMENTS TO ELABORATE SCIENTIFIC PAPERS / p. 474

*** ALPHABETICAL AUTHOR INDEX**

A
ABDURRAHMANOVA C.
/ p. 290
ABRAMIUC A. / p. 253
AHMET S. / p. 240, 270
ALI S. / p. 337, 343

B BOLZHIROVA E./ p. 290 BOTEZATU C. / p. 368 BRĂBIESCU-C.L. / p. 442 BULZ A. M. / p. 464

CAMILLINI A./ p. 447 **CALIN M.F. / p. 264** CANUZAKOV K. / p. 290 CARACALEANU C.M. / p.246 CARACALEANU S.G. / p. 246 CAZAN F. / p. 253, 259 CEMALETTIN B. / p. 270 CHERA-FERRARIO B. / p. 277 CİCİOĞLU H. İ. / p. 452, 458 **CIUREA C. / p. 368** COJOCARU A.M. / p. 284 COJOCARU M. / p. 284 CORRADINI P. / p. 303 COSTACHE R. / p. 427 COSMA A. / p. 442 COSMA G.A. / p. 442 **CRISTEA D. I. / p. 464 CRISTIAN V. / p. 427**

D
D'AMEN G./ p. 447
DEMİRHAN B. / p.290
DINŢICĂ G. / p.319
DOBRESCU T. / p.354
DUȚĂ D. / p.295

E ENE-VOICULESCU C./p. 235 ENE-VOICULESCU V./p. 235

G GANERA C. / p. 325 GEORGESCU A. / p. 253, 259 GUNAY M. / p. 290 **GÜLTEN U. / p. 337**

H HAZAR Z. / p. 452 HOSSEINI V. C./ p. 303

I IANCU A. / p. 277 IANO P. G. / p. 464 ILHAN E. L. / p. 452, 458 IZZO R./ p. 303, 447

K KAUKAB A./ p. 308 KERIME B. / p. 337

L LICĂ E. / p. 442 LUPU G.S. / p. 313

M MACOVEI S. / p. 319, 432 MAN M.C. / p. 325 MANOS M. / p. 330 MARCU D./ p. 319 MAYA B. / p. 270 MEHİBE A./ p. 240 METIN S. / p. 337, 343 MİHRİBAN Ü./p. 240 MIHAI R.A. / p. 264 MINE T. / p. 270 MUSTAFA K. / p. 348

N NADİDE A. P./ p. 240, 270 NAMLI S. / p. 458 ENAZMI S. / p. 348 NESLIHAN L. / p. 337, 343

O OLTEAN A. / p. 354 OLTEANU N./ p. 362 OROS S. / p. 464 P
PAVEL S.-I. / p. 368
PEHOIU C. / p. 388, 396
POPA Co. / p. 375
POPA Cr. / p. 295, 375
POPA C.-E. / p. 313
POPESCU L. / p. 330
POPESCU R. / p. 354
POTOP L. / p. 414
POTOP V. / p. 246, 403, 422

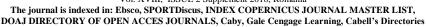
R RANCEA A.C./ p. 383 RIZESCU C./ p. 259 ROTAR M./ p. 464

S SABĂU A. M. / p. 464 SAVU C.F. / p. 388, 396 SEFA L./ p. 337, 343 SIMA E.D. / p. 403 STĂNESCU M. / p. 422

T TEODORESCU S./p. 235 TEUŞDEA C./p. 408 TEKKURŞUN D. G./. 452, 458 TIMNEA A. C./p. 414 TIMNEA O. C./p. 414, 422

Ţ ŢIFREA C. / p. 427

V VARGHESE C A./ p. 308 VĂRZARU C. / p. 259 VLĂDUȚU G.N. / p. 432


Z ZAHIU M. / p. 432 ZĂVĂLEANU M. / p. 442 ZEHRANUR S. T. /p. 240

Y YAĞMUR K. / p. 240 YAŞAR K. / p. 348

Ovidius University Annals, Series Physical Education and Sport /SCIENCE, MOVEMENT AND HEALTH Vol. XVIII, ISSUE 2 Supplement 2018, Romania The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

Technical Requirements to Elaborate Scientific Papers

TITLE OF THE PAPER

NAME AND SURNAME of the paper's author or authors¹

Example:

FISHER DIANA¹, VIOLLET ANNA², LE BOUC IANS³

Footnotes will consist of:

a) name of department, name of institution (if necessary), name of university, city and address of university, native country (Home, Times New Roman, Size 8, Justify),

b) for the author who deals with the correspondence for the paper or reprint: name of department, name of institution (if necessary), name of university, city and address of university, native country followed by the phrase CORRESPONDENCE AND REPRINT REQUESTS: (Home, Times New Roman, Size 8, Justify, Caps Lock) name of the author, address, e-mail, phone and/or fax number (if necessary) (Home, Times New Roman, Size 8, Justify)

and

c) in a new paragraph, the source of the material support in the shape of GRANT-s (if necessary)(Home, Times New Roman, Size 8, Justify), written after the phrase GRANT SUPPORT: (Home, Times New Roman, Size 8, Justify, Caps Lock).

(follow as example the footnotes)

Technical requirements to elaborate the structured informative abstract:

Abstract

Objective. The aim of this study is to examine the relationship between skinfolds method (accu-measure caliper) and near-infrared method (FUTREX 1000 Personal Body Fat Tester)

Methods. We used Romanian university students (27 males and 97 females). The body fat percentage was measured by two methods: the skinfolds measurements...

Results. Body fat estimated with accu-measure caliper was moderate correlated with body fat estimated with FUTREX for women (r = 0.41)...

Conclusions. We cannot consider that one method of body composition analysis (skinfolds method or near-infrared method) is more accurate than...

Key Words: skinfolds method, near-infrared method, percentage of body fat, fat mass, free fat mass, Romanian students.

Technical requirements to elaborate the non-structured indicative or informative abstract:

Abstract

The aim of this study was to examine the relationship between skinfolds method (accu-measure caliper) and near-infrared method (FUTREX 1000 Personal Body Fat Tester) for body fat percent, fat mass and free fat mass estimations, in Romanian university students. We used Romanian university students (27 males...

Key Words: skinfolds method, near-infrared method, percentage of body fat, fat mass, free fat mass, Romanian students.

¹ Department of Obsetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO 65212, USA.

² Department of Obsetrics, Gynecology and Women's Health, Division of Biological Sciences, University of Missouri, Columbia, MO 65212, USA. CORRESPONDENCE AND REPRINT REQUESTS: Alissa Viollet, NW509 Health Sciences Center, 1 Hospital Dr., Columbia, MO 65212, USA. aviollet@missouri.edu, tel. 573-882-6334, fax. 573-882-6399

³ Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, CEP São Paulo 05508-900, Brazil. GRANT SUPPORT: Eunice Kennedy Shriver National Institute of Child Health and Human Development HD055231.

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

The page layout of the research paper is 2.5 cm from the top, bottom, left and right margins (Page Layout, Margins, Top 2.5cm, Bottom 2.5cm, Left 2.5cm, Right 2.5cm), portrait oriented (Page Layout, Orientation, Portrait), A4 (Page Layout, Size, A4 - 21cm x 29.7cm).

The title of the paper, the name of the author (authors) and the abstract will be written on a single column, following the rules of laying out the page.

The chapters: Introduction, Methods, Results, Discussions, Conclusions, Thanks (if necessary) and Bibliography will be written on two columns, except for the tables and charts which will be written on a single column, following the rules of laying out the page..

The space between the title of the paper, the name of the author or authors of the paper, abstract, introduction, methods, results, discussions, conclusions and bibliography is one line (Enter, Font Size 10); the space between the writing and the tables or charts is also one line (Enter, Font Size 10).

The titles of the sub-chapters will be written in bold (Home, Times New Roman, Size 10, Bold, Justify, First Line Indent 0,5cm). All the paragraphs will present a 0,5 cm size compared to the margin (First Line Indent 0,5cm). The text will have the following technical characteristics: Home, Times New Roman, Size 10, Justify. Between the titles of the sub-chapters and the text there will be no space.

Example of laying out the page and arranging the text:

Relationship between skinfolds and near-infrared (FUTREX 1000) methods for body fat estimation in Romanian university students

IONESCU TUDOR MADALIN, PHD 1, MARCU ANDREI, MS 2

Abstract

Objective. The aim of this study was to examine the relationship between skinfolds method (accu-measure caliper) and near-infrared method (FUTREX 1000 Personal Body Fat Tester) for body fat percent, fat mass and free fat mass estimations, in Romanian university students.

Methods. We used Romanian university students (27 males and 97 females). The body fat percentage was measured by two methods: the skinfolds measurements (accu-measure caliper) and near-infrared measurement (Futrex 1000).

Results. Body fat estimated with accu-measure caliper was moderate correlated with body fat estimated with FUTREX for women (r=0.41) and for men (r=0.55). Fat mass (skinfolds method) skinfolds method and free fat mass (skinfolds method) were moderate correlated with fat mass (near-infrared method), respectively free fat mass (near-infrared method) for women (r=0.41, respectively r=0.41) and correlated for men (r=0.60, respectively r=0.60).

Conclusions. We cannot consider that one method of body composition analysis (skinfolds method or near-infrared method) is more accurate than the other because we don't apply a gold standard method of measurement, for subjects. However, near-infrared method trends to have higher estimations of body fat, then skinfolds method on Romanian students.

Key Words: skinfolds method, near-infrared method, percentage of body fat, fat mass, free fat mass, Romanian students.

Introduction

The increase in obesity is a global phenomenon that is even being addressed by the World Health Organization (World Health Organization, 2003), as well as by medical and government organizations in the world.

One of factors that contribute to body composition changes, respectively to body fat percent grow up is physical inactivity or sedentary lives (National Institutes Of Health, 1998).

Factors, such as age, gender, level of adiposity, physical activity and ethnicity influence the choice of method and equation. To date, race-specific SKF (American Indian women, Black men, and Asian adults), BIA (American Indian women and Asian adults), and NIR (American Indian women and

White women) equations have been developed (Heyward, 1996).

Infrared is not an indicator of body composition in the pre-adolescent population on an individual basis. This method continues to be no accurate, cost-effective means to assess individual body composition by a rapid, noninvasive methodology (Michael, Jan, Wendy, 2003).

Larger prediction errors have been reported with the lower cost, hand-held Futrex 1000 model. Because of these errors, the manufacturer's equations for the Futrex 1000 are not recommended to assess body composition (Wagner and Heyward, 1999).

Kamimura et al. cannot consider that one method of body composition analysis (SKF method, bioelectrical impedance analysis, or NIR

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

method) is more accurate than the other because they didn't apply a gold standard method, for patients on long-term hemodialysis therapy. However, the most simple, long-established, and inexpensive method of SKF thickness seems to be still very useful for assessing body fat (Kamimura, Jose Dos Santos, Avesani, Fernandes Canziani, Draibe, Cuppari, 2003).

In a healthy group of 29 subjects examined by Elia et al., NIR method had little or no advantage over other simple methods in predicting body composition measured by classical whole-body densitometry. NIR method was also found to underestimate body fat increasingly as the degree of adiposity increased. This under-estimation was found to be particularly marked in a small and separate group of grossly obese women, BMI greater than 50 kg/m², whose body composition was assessed by total body potassium as well as by densitometry (Dumitru, 1997).

Heyward et al. concluded that all three field methods, respectively SKF, bioelectric impendance and NIR compared with hydrostatic weighting, accurately estimate the percent of body fat for nonobese women; however, none of these three methods is suitable for estimating the percent of body fat for obese women (Heyward, Cook, Hicks, Jenkins, Quatrochi, Wilson, 1992).

One study concluded that, SKF is higher correlated with under water weighting than did FUTREX 5000 with under water weighting for males (0.95 versus 0.80), females (0.88 versus 0.63), and the whole group (0.94 versus 0.81) and FUTREX 5000 overestimated body fat in lean subjects with less than 8% fat and underestimated it in subjects with greater than 30% fat. Analyzing this, the authors concluded that, SKF give more information and more accurately predict body fat, especially at the extremes of the body fat continuum (McLean and Skinner, 1992).

The present findings indicate that, the FUTREX 5000 provide more accurate estimates of body fat percent than the FUTREX 5000A or FUTREX 1000 instruments (Smith, Johnson, Stout, Housh, Housh, Evetovich, 1997). Continued research with expanded populations is needed to further demonstrate and evaluate the utility of FUTREX 5000A device (Cassady, Nielsen, Janz, Wu, Cook, Hansen, 1993).

Conway et al. concluded that, body composition (percentage fat) estimated in 53 adults (23 to 65 years of age) by infrared interactance, is correlated with SKF (r=0.90) measurements. They conclusioned that, the method is safe, noninvasive, rapid, easy to use, and may prove useful to predict percentage body fat, especially in the obese (Conway, Norris, Bodwell, 1984).

SKF method is still a reliable technique of BF estimation, but if it's not realized with the most

accurately instruments the results trends to have errors in BF estimation and FM, respectively FFM (Cyrino, Okano, Glaner et al., 2003). The NIR method is still a questionable technique for BF estimation (McLean and Skinner, 1992; Michael, Jan, Wendy, 2003; Wagner and Heyward, 1999).

The objective of this study is to examine the relationship between skinfolds (SKF) method (accu-measure caliper) and near-infrared (NIR) method (FUTREX 1000 Personal Body Fat Tester) for body fat percent (BF), fat mass (FM) and free fat mass (FFM) estimation, in Romanian university students.

Methods

The subjects were white Caucasian and students at faculties of Ovidius University in Constanta. The aims and methods of the study were explained to the participants, who chose freely to participate in this study. As a result, the sample included 127 students (97 females and 27 males), with age between 18 and 23 years old.

Body height was evaluated with an error of 0.1 centimeters and body weight was evaluated with a calibrated digital scale, with an error of 0.25 kilograms. For this measurement the subjects were dressed summarily. BMI was calculated to estimate the category of weight for each subject by using the Quetelet formula (Dumitru, 1997).

Percent of body fat was estimated with two methods. The first method consisted in calculation of body fat percent with Jackson and Pollock, (1978), equation, for male subjects and Jackson, Pollock and Ward, (1980), equation, for female subjects. The abdominal (taken vertically with a broad grip, 5cm. lateral to the omphalion (centre of the umbilicus)), chest (taken obliquely along the natural cleavage line of the pectoral between the axilla and nipple) and thigh (vertical fold taken midway between the inguinal crease and proximal border of the patella) skinfolds were measured for

	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		٠.	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	
٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	٠	٠	٠	•	•	٠	•	•	٠	٠	٠	٠	•	•	•	•	•	٠	٠	٠	٠	٠	

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

Results

In table 1 the differences between sexes were significant only for body height (t = 9.838) and body weight (t = 5.841).

	M ±	SD
	Males	Females
Variables	$(\mathbf{n} = 27)$	(n = 97)
Age (years months)	$19^7 \pm 0^{11}$	$20^{1} \pm 2^{8}$
Body height (cm)	1.789 ± 0.078 *	1.63 ± 0.059
Body weight (kg)	66.074 ± 11.135 *	52.722 ± 7.842
BMI (kg/m^2)	20.598 ± 2.929	19.811 ± 2.485

BMI, body mass index; M, mean; SD, standard deviation; n, number of subjects.

In table 2 the differences between sexes were significant for all variables (BFskf, t=13.278; FMskf, t=6.346; FFMskf, t=11.498; BFnir, t=7.856; FMnir, t=2.883; FFMnir, t=9.861). All variables from SKF method had significant correlations with their correspondent variable from NIR method, when body height, body weight and age were controlled. BFskf was moderate correlated with BFnir for women (r=0.41) and for men (r=0.55). FMskf and FFMskf were moderate correlated with FMnir, respectively FFMnir for women (r=0.41) and correlated for men (r=0.60), respectively r=0.60).

Table 2. Dif	ferences between SKF method	d and NIR method						
	Skinfold method (Accu-measure caliper) $M \pm SD$							
Variables	Males (n = 27)	Females (n = 97)						
BFskf (%)	8.962 ± 4.407 * †	21.886 ± 4.704 *						
FMskf (kg)	6.25 ± 4.006 * †	11.806 ± 4.085 *						
FFMskf (kg)	59.824 ± 8.207 * †	40.915 ± 4.512 *						

	Infrared method (Futrex 1000) M ± SD						
Variables	Males (n = 27)	Females (n = 97)					
BFnir (%)	13.074 ± 5.988 †	22.805 ± 4.475					
FMnir (kg)	8.97 ± 5.431 [†]	12.164 ± 3.615					
FFMnir (kg)	57.104 ± 8.225 †	40.557 ± 5.486					

^{*} correlated with BFnir, FMnir and FFMnir for males, respectively for women, when height, weight and age are controlled, p<0.05; † differences between sexes, p<0.05.

BFskf, body fat - skinfolds method; FMskf, fat mass - skinfolds method; FFMskf, free fat mass - skinfolds method; BFnir, body fat - infrared method; FMnir, fat mass - infrared method; FFMnir, free fat mass - infrared method; M, mean; SD, standard deviation; n, number of subjects.

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

Discussion

Compared with the anthropometric reference data 1988 – 1994 from United States (National Health and Nutrition Examination Survey, 2005), body height for our subjects was slightly higher for men and slightly lower for women, compared with the corresponding values for Americans. The body weight was lower, for both men and women, compared with the corresponding values for Americans.

.....

Acknowledgments

I thank all students for participating in this study. No funding was used for this study.

References

Cassady, S.L., Nielsen D.H., Janz K.F., Wu, Y.T., Cook, J.S., Hansen, J.R., 1993, Validity of near infrared body composition analysis in children

and adolescents, Med Sci Sports Exerc, 1993 Oct; 25(10):1185-1191.

Conway, J.M., Norris, K.H., Bodwell, C.E., 1984, A new approach for the estimation of body composition: infrared interactance. Am J Clin Nutr, 1984 Dec; 40(6):1123-1130.

Cyrino, E.S., Okano, H.A., Glaner, F.M., et al., 2003, Impact of the use of different skinfold calipers for the analysis of the body composition. Rev Bras Med Esporte, 2003; 9(3):150-153.

National Institutes of Health (NIH). Clinical Guidelines On The Identification, Evaluation, And Treatment Of Overweight And Obesity In Adults. The Evidence Report. Publication No. 98-4083, 1998 Sep: XI-XXX.

Attention!!! First of all, the article is written on a single column until it is finalized. After finalizing it, you select the whole text after the abstract until the first table or chart and you turn it into two columns. The same operation is done, in order, for (the whole) texts between charts and/or tables; also, the (whole) text, from the last table or chart until the bibliography inclusive, will be turn into two columns. **The paper must be 5-10 pages**.

Tables

The tables including data will be done on a single column and they cannot be introduced into the text as photographs. The counting (consecutive) and the title of the table (conclusive and concise) will be written on the top right hand. The reference to the table (the quotation in the text) will be found in the text that precedes the table. The number of the table, the title of the table, the results, the statistical section and the abbreviation section will be a constitutive part of the table. It is recommended that you merge the data in as few tables as possible. The additional black lines in the tables including data will be colored in white (Table Tools, Design, Pen Color, White, urmat de Draw Table prin care se trasează peste liniile negre suplimentare culoarea albă).

Table 1. Physical characteristics of feminine subjects

	Subjects with domi	nant upper and	Subjects with dominant upper and				
Variables	lower right limb(n	= 8)	lower left limb $(n = 8)$				
Height (cm.)	$163,25 \pm 4,95$	3,032%	$162,5 \pm 4,309$	2,652%			
Weight (kg.)	$66,088 \pm 7,343$	11,111%	$67,038 \pm 5,352$	7,984%			
$IMC (kg/m^2)$	$24,745 \pm 1,827$	7,383%	$25,368 \pm 1,439$	5,673%			
Percentage of body fat(%)	$26,625 \pm 2,873$	10,791%	$26,55 \pm 2,964$	11,164%			
Fat mass (kg.)	$17,739 \pm 3,56$	20,069%	$17,91 \pm 3,235$	18,063%			
The values are presented as $M + DS$ si CV^{0}							

The values are presented as $M \pm DS$ şi CV%.

IMC, index of body mass; M, mean; DS, standard deviation; CV, variability coefficient; n, number of subjects.

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

The connection between the data in the table and the statistical section will be done through identification letters counted in alphabetical order or identification symbols used in the order *, \dagger , \ddagger , \$, \parallel , \P , **, \dagger \dagger , \ddagger , etc.; inside the table, the letters or the identification symbols will be written in the superscript(Home, Superscript) immediately after the data, and inside the statistical section, the identification letters will be written before the hyphen and the statistical comments and the identification symbols immediately before the statistical comments (without a hyphen).

The tables from other publications should be used with the author's (authors') permission, indicating the bibliographic source where it was taken from.

Example: 0.851 ± 0.044 a

Example: a – significantly different compared to the force ratio F150 Right side flexion/F150 Left side flexion, 0° , for the subjects who practise football, respectively athletics (triple jump), F(2, 12) = 5,5;

Table 2. Means of results of maximum isometric force ratios for feminine subjects who practise different sports

	Handball $(n = 5)$	Football $(n = 5)$	Athletics (triple jump)
Force ratio			(n = 5)
F130 Flexion/ F110 Extension (30°)	$0,589 \pm 0,109$	$0,556 \pm 0,075$	$0,565 \pm 0,05$
F150 Flexion/F110 Extension (50)	18,506%	13,489%	8,85%
F150 Right side flexion/F150 Left side flexion	0.851 ± 0.044 a b	0.942 ± 0.056 °	$0,919 \pm 0,03^{d}$
(0°)	5,17%	5,945%	3,264%
F120 Right side rotation/ F120 Left side	$0,972 \pm 0,07$	$0,825 \pm 0,227$	$1,052 \pm 0,019$ e
rotation (-30°)	7,202%	27,515%	1,806%

- a significantly different compared to the mean of the force ratio F150 Right side flexion/ F150 Left side flexion, 0° , for subjects who practise football, respectively, athletics (triple jump), F(2, 12) = 5,5;
- b significantly different compared to the mean of the force ratioF150 Right side flexion/ F150 Perfectly ballanced left side flexion (when all the force ratios are equal to 1), 0°, t=7,572;
- c significantly different compared to the mean of the force ratio F150 Right side flexion/ F150 Perfectly ballanced left side flexion (when all the force ratios are equal to 1), 0°, t=2,316;
- d significantly different compared to the mean of the force ratio F150 Right side flexion/ F150 Perfectly ballanced left side flexion (when all the force ratios are equal to 1), 0°, t=6,037;
- e significantly different compared to the mean of the force ratio F120 Right side rotation/ F120 Perfectly ballanced lesft side rotation (when all the force ratios are equal to 1), -30°, t=6,12;

The values are presented as M \pm DS and CV%; Significance limit established at p<0,05.

M, mean; DS, standard deviation; CV, variability coefficient; n, number of subjects; t, test t student; F, test ANOVA.

Figures

The tables which contain figures will be done on a single column. The counting (consecutive) and the title of the figure (conclusive and concise) will be written on the bottom left side immediately after the figure. The reference to the figure (the quotation in the text) will be found in the text that precedes the table which contains the figure. The figure, the number of the figure, the title of the figure, the statistical section (if necessary) and the abbreviation section will be a constitutive part of the table that contains the figure. When symbols, numbers or letters are used to identify the parts of the figure, each of them should be explained clearly in the statistical section. It is recommended that you merge the data in as few figures as possible. The lines of the table that contains the figure will be transparent. (Table Tools, Design, Borders, No Borders).

The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengage Learning, Cabell's Directories

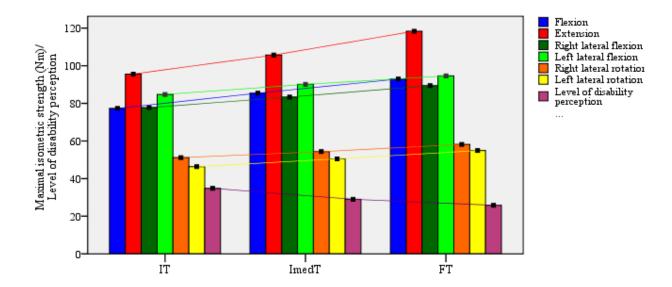


Figure 27. The evolution of means of maximum isometric force and the degree of perception at different tests. Nm, Newton*meter; IT, initial testing; ImedT, intermediary testing; FT, final testing.

The figures will have a resolution of minimum 250 dpi for a better understanding after the print The figures will be presented in original sizes in the text (sizes chosen by the author(s) of the paper), not to be subsequently modified. The electronic formats accepted are: Bitmap (.bmp), JPEG (.jpg, .jpeg) or GIF (.gif).

The results and the statistical explanations will be presented in one way - data in the table, figure in the table or text; these ways of presenting can be combined but they do not have to repeat themselves.

Measures

Length, height, weight and volume will be specified in metrical units (meter, kilogram or litre or their decimal multiples). Temperature will be specified in degrees Celsius (°C). Blood presure will be specified in mm column of mercury (mmHg). Other clinical measurements will be specified in the International System of Units (International System of Units (SI)).

Abbreviations and symbols

The standard abbreviations must be used. You should avoid introducing abbreviations into the title or in the abstract. An abbreviation in parantheses will be preceded by the full description, only the first time the abbreviation is used in the text and only if the abbreviation is not a standard measure unit.

Example: Body weight, body composition, resting metabolic rate (RMR), respiratory quotient (RQ), temperature, fasting serum glucose, insulin, free fatty acids, and ghrelin were assessed at baseline and after 21 d (12-h fast) and 22 d (36-h fast) of alternate-day fasting.

RMR and RQ did not change significantly from baseline to day 21, but RQ decreased on day 22 (P < 0.001), which resulted in an average daily increase in fat oxidation of ≥ 15 g.

Bibliography

Wuthiekanun, V., Chierakul, W., Langa, S., et al., 2006, Development of antibodies to Burkholderia pseudomallei during childhood in melioidosis-endemic northeast Thailand. Am J Trop Med Hyg 2006 Ian 12:74(10):1074-5.